
Representations of Lie algebras

I introdu
e the basi
s of the generi
 representation theory for simple and semisimple Lie algebras. The 
on
epts of irrre-

du
ible representations (irreps), intertwiners, Casimir operators, Cartan subalgebra, root ve
tors, weight ve
tors, Dynkin

diagrams et
 are explained. I mention the general re
ipy for 
lassifying the �nite-dimensional irredu
ible representations

of simple and semisimple Lie algebras, as well as the 
lassi�
ation of �nite-dimensional simple and semisimple Lie algebras.

Basi
 de�nitions

The Lie algebra

A Lie algebra g over the number �eld K is a linear ve
tor spa
e equipped with an antisymmetri
 bilinear operation

satisfying the Ja
obi identity 
alled the Lie bra
ket:

1. bilinearity: ∀a, b ∈ g, p, q ∈ K : [pa+ qb, c] = p[a, c] + q[b, c],

2. antisymmetri
ity: ∀a, b ∈ g : [a, b] = −[b, a],

3. Ja
obi identity: ∀a, b, c ∈ g : [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0.

Note that the Lie bra
ket is not only non
ommutative, but also nonasso
iative. It is the reason why it is denoted [a, b]
instead of a · b. In what follows we will work with the number �eld of 
omplexes C unless expli
itly stated otherwise.

Stru
ture 
onstants

Consider a basis in the Lie algebra:

g ∋ a = aαtα,

where α ∈ 1..n where n = dim g. The basis ve
tors tα are 
alled the generators of the algebra. The Lie bra
ket of any two

algebra elements 
an be expanded over the basis of generators using its bilinearity:

[a, b] = [aαtα, b
βtβ ] = aαbβ[tα, tβ ].

Be
ause {tα} is a basis in the Lie algebra, any element of the algebra 
an be expanded over this basis, the [tα, tβ] being
no ex
eption. We arrive at

[a, b] = aαbβ fγ
αβtγ ,

where the 
oe�
ients fγ
αβ are 
alled the stru
ture 
onstants : they uniquely determine the stru
ture of the Lie algebra.

More pre
isely, the stru
ture of the algebra is determined by equivalen
e 
lasses of the stru
ture 
onstants with respe
t

to the 
hanges of the basis. The transformation properties of the matrix fγ
αβ are ni
ely en
oded in the tensor notation:

the up and down indi
es transform under the usual transformation law.

The stru
ture 
onstatnts are antisymmetri
 with respe
t to the two down indi
es. It is of 
ourse true in any basis of

generators as it is a tensor equation whi
h 
an hold either in all 
oordinates at on
e or in none. The Ja
obi identity also

imposes an additional 
onstraint on the stru
ture 
onstants.

Representations

An r-dimensional representation ρ of the Lie algebra is a linear fun
tion from the algebra to the spa
e of K-valued r × r
matri
es:

1. linearity: ∀a ∈ g, k ∈ K : ρ(ka) = kρ(a),

2. algebra stru
ture: ∀a, b ∈ g : ρ([a, b]) = ρ(a)ρ(b)− ρ(b)ρ(a).
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As we see, the representation models the Lie bra
ket as a 
ommutator of linear operators (matri
es) on some r-dimensional

linear spa
e. The number r is 
alled the dimension of the representation, and in general it is not equal to the dimension

of the algebra n!

Of 
ourse, a Lie algebra admits multiple representations of di�erent dimensions.

A subspa
e S of the representation spa
e is 
alled an invariant subspa
e if

∀a ∈ g : ρ(a)S ⊆ S.

A representation is 
alled irredu
ible if it doesn't have invariant subspa
es ex
ept for {0} and itself.

In simple words, if there is a nontrivial subspa
e of the representation that transforms in a self-
ontained way under

the algebra elements, then the representation is redu
ible. Basi
ally, it 
ontains a more fundamental building blo
k (the

proje
tion of itself on the mentioned subspa
e). Irredu
ible representations (irreps) are the ones whi
h don't 
ontain

a more fundamental building blo
k in themselves. Thus, they are themselves the fundamental building blo
ks of the

representation theory and are of primary interest for those who wish to 
lassify �nite-dimensional representations of a

given Lie algebra.

For every Lie algebra there is a spe
ial representation 
alled the adjoint. It a
ts on the algebra itself by

ada |b〉 = |[a, b]〉 .

It is straightforward that the dimension of the adjoint representation is equal to the dimension of the algebra.

Enveloping algebra and Casimirs

For any Lie algebra g we 
an de�ne a universal enveloping algebra. It is an asso
iative algebra of polynomials of the Lie

algebra generators, for whi
h the following holds:

∀a, b ∈ g : ab− ba = [a, b].

Here the asso
iated produ
t is taken in the enveloping algebra, while on the right hand side we en
ounter the Lie algebra

bra
ket.

The parti
ularly interesting for the representation theory are the spe
ial elements of the enveloping algebra 
alled the

Casimir operators whi
h have the following property: they 
ommute with all elements of the Lie algebra (in the enveloping

algebra):

C : ∀a ∈ g : Ca = aC.

The exa
t form of Casimirs depends on the Lie algebra. It is important to keep in mind that Casimirs live in the universal

enveloping algebra, not in the original Lie algebra. In general Casimirs are polynomials over the Lie algebra generators.

Casimirs are parti
ularly important for representation theory be
ause of the theorem 
alled the S
hur's lemma:

S
hur's lemma: suppose we have two �nite-dimensional irredu
ible representations ρ1 and ρ2 of the same �nite-

dimensional Lie algebra g on two linear spa
es V1 and V2 respe
tively and a linear operator f : V1 → V2 whi
h preserves

the stru
ture of the algebra, meaning that

fρ1 = ρ2f.

Then,

1. f is either a zero map (whi
h maps any element of V1 to zero), or an isomorphism.

2. In 
ase V1 = V2 and ρ1 = ρ2, then f = λ · I is a multipli
ation on some number λ ∈ K.

As usual, I don't bother writing proofs of theorems in my notes. These 
an easily be found on the internet, and the

purpose of this note is to give an introdu
tion to the subje
t and state the most important results.

Now 
onsider a representation ρ of some Lie algebra g. The key fa
t is that ρ de�nes naturally a representation of the

universal enveloping algebra be
ause matri
es 
an be multiplied. Hen
e the Casimir 
an be represented as an r× r matrix

f on the representation spa
e V . Sin
e it by de�nition 
ommutes with the Lie algebra, the S
hur's lemma is appli
able

here. We end up with an assertion of f to be a multipli
ation by some number λ.

A 
onsequen
e of S
hur's lemma: for any irrep ρ the Casimir operator is represented by a multipli
ation by some

number λ. Thus, irredu
ibles 
an be labeled by the values of Lie algebra Casimirs.
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Representation theory of su(2)

The su(2) Lie algebra

The su(2) Lie algebra is a simplest nontrivial example of the Lie algebra. It is 3-dimensional and de�ned by the following

Lie bra
ket relations:

[tα, tβ ] = εαβγtγ .

These of 
ourse holds only in the basis used for de�ning the algebra, be
ause εαβγ doesn't have the proper transformation

properties like the ones stru
ture 
onstants have.

The de�nition 
an be rewritten in a more expli
it form:

[x, y] = z

[y, z] = x

[z, x] = y

for the three algebra generators {x, y, z}.
Interesting fa
t: the su(2) Lie algebra is equivalent to the so(3) Lie algebra of the rotation group in 3 spatial dimensions:

su(2) ∼ so(3).

We will see a lot of these �
oin
idental� equivalen
e relations between low-dimensional algebras. The 
lassi�
ation theory

of Lie algebras by Dynkin (
overed later in this post) explains their origins.

Another interesting fa
t: su(2) algebra is asso
iative and is related to the ve
tor multipli
ation in 3 dimensions. In fa
t,

it exa
tly resembles the stru
ture of ve
tor multipli
ation for the three basis ve
tors {x, y, z}.
The quadrati
 Casimir of su(2) is known from the quantum-me
hani
al theory of the angular momentum: it is equal to

C = x2 + y2 + z2.

It is easy to show with a pie
e of algebra that C 
ommutes with su(2) in its enveloping algebra:

Cx− xC = x3 + yyx+ zzx− x3 − xyy − xzz =

= yyx− xyy + zzx− xzz.

yyx− xyy = yyx− yxy + yxy − xyy = y(yx− xy) + (yx− xy)y =

= y[y, x] + [y, x]y = y(−z) + (−z)y = −(yz + zy);

zzx− xzz = zzx− zxz + zxz − xzz = z(zx− xz) + (zx− xz)z =

= z[z, x] + [z, x]z = zy + yz;

Cx− xC = −(yz + zy) + zy + yz = 0.

Analogously, we 
an show that

Cx− xC = Cy − yC = Cz − zC = 0.

This is su�
ient to 
onstatate that C is a Casimir of su(2) and the irreps of su(2) are labeled by the value of C (a

ording

to the 
onsequen
e of the S
hur's lemma).

The su(2) ∼ sl(2) relation and 
anoni
al basis

Consider another 3-dimensional Lie algebra sl(2) whi
h is de�ned by the Lie bra
kets

[h, e] = e

[h, f ] = −f

[e, f ] = 2h

for the three generators {e, f, h}.
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I 
laim that su(2) ∼ sl(2), that is that the two algebras are equivalent (related by an isomorphism). In order to support

my 
laim I have to provide the isomorphism between the ve
tor spa
es and work out the 
ommutation relations in order

to prove that it preserves the stru
ture of the Lie algebra:











e = ix− y

f = ix+ y

h = iz

The proof that this is in fa
t an isomorphism of algebras:

[h, e] = [iz, ix− y] = −[z, x]− i[z, y] = −y − i(−x) = ix− y = e

[h, f ] = [iz, ix+ y] = −[z, x] + i[z, y] = −y + i(−x) = −ix− y = −f

[e, f ] = [ix− y, ix+ y] = i[x, y]− i[y, x] = 2i[x, y] = 2iz = 2h

This in a typi
al example of an important fa
t: the Lie algebras with di�erent but related by a 
hange of basis stru
ture


onstants are equivalent.

Raising and lowering operators

Consider an r-dimensional irredu
ible representation ρ of su(2) ∼ sl(2) on the representation spa
e V . Choose an eigen-

ve
tor |Ψm〉 of H = ρ(h) in V with eigenvalue m:

H |Ψm〉 = m |Ψm〉 .

We would like to exam the ve
tors

|Ψ+〉 = E |Ψm〉 = ρ(e) |Ψm〉 ,
|Ψ−〉 = F |Ψm〉 = ρ(f) |Ψm〉 .

In parti
ular, we want to see how H a
ts on them. Consider the following 
al
ulation:

H |Ψ+〉 = HE |Ψm〉 = (EH + [H,E]) |Ψm〉 = (EH + E) |Ψm〉 =

= (Em+ E) |Ψm〉 = (m+ 1) |Ψ+〉 ,

H |Ψ−〉 = HF |Ψ−〉 = (FH + [F,H ]) |Ψm〉 = (FH − F ) |Ψm〉 =
(Fm− F ) |Ψm〉 = (m− 1) |Ψ−〉 .

We 
on
lude that |Ψ±〉 are also eigenve
tors of H with eigenvalues m± 1. In general, we 
on
lude that

|Ψ+〉 = Am |Ψm+1〉 ,

|Ψ−〉 = Bm−1 |Ψm−1〉
for some numeri
 
oe�
ients Am and Bm.

We see that E = ρ(e) and F = ρ(f) a
t as raising and lowering operators on any irrep of su(2): they in
rease and

de
rease the eigenvalue of H = ρ(h) by one respe
tively. We arrive at the des
ription of su(2) irreps through the spe
tral

de
omposition of H .

As we will see later, this situation is not unique to su(2). We will learn how to �nd analogues of the level operator H and

raising/lowering operators E,F in more 
omplex Lie algebras.
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Re
ursive relations

The last 
ommutation relation that we haven't used is

[E,F ] = 2H.

Lets apply this to the ve
tor |Ψm〉:
[E,F ] |Ψm〉 = EF |Ψm〉 − FE |Ψm〉 ;

EF |Ψm〉 = EBm−1 |Ψm−1〉 = Am−1Bm−1 |Ψm〉 ;
FE |Ψm〉 = FAm |Ψm+1〉 = AmBm |Ψm〉 ;

2H |Ψm〉 = 2m |Ψm〉 ;
(Am−1Bm−1 −AmBm) |Ψm〉 = 2m |Ψm〉 .

This gives the re
ursive relation for the numeri
 
oe�
ients Am and Bm:

Am−1Bm−1 −AmBm = 2m.

Another relation 
an be deriving by 
onsidering unitarity of the irrep. Suppose that X = ρ(x), Y = ρ(y) and Z = ρ(z)

an be represented as antihermitian matri
es (this is allowed by the 
ommutation relations between them). Then

E† = (iX − Y )† = iXY = F,

F † = (iX + Y )† = iX − Y = E,

H† = (iZ)† = iZ = H.

Consequently, supposing that the eigensystem of H is properly normalized, the following holds:

〈Ψm+1|E |Ψm〉 = Am 〈Ψm+1| Ψm+1〉 = Am,

〈Ψm+1|F † |Ψm〉 = 〈Ψm|F |Ψm+1〉∗ = B∗
m 〈Ψm| Ψm〉∗ = B∗

m,

F † = E =⇒ Am = B∗
m.

The re
ursive relation then be
omes

|Am−1|2 − |Am|2 = 2m.

Solving the re
ursive relations

We've 
ome 
lose to the 
lassi�
ation of all �nite-dimensional irredu
ible representations of su(2).

We are 
onsidering �nite-dimensional representations, thus there must be an eigenve
tor of H with maximal possible

eigenvalue, and another one with minimal possible eigenvalue. We will 
all these eigenvalues

m
min

, m
max

.

Sin
e E |Ψm〉 ∼ |Ψm+1〉 and there 
ould be no eigenvalue greater than m
max

, we 
an only 
on
lude that

E |Ψm
max

〉 = F |Ψm
min

〉 = |0〉 .

Or, in terms of the 
oe�
ients,

Am
min

−1 = Am
max

= 0.

What we would like to do is to sum our re
ursive relation for m from some m0 + 1 to j = m
max

:

j
∑

m0+1

(

|Am−1|2 − |Am|2
)

= 2

j
∑

m0+1

m.

On the right-hand side there is an arithmeti
 progression, whi
h 
an be easily summed:

j
∑

m0+1

(

|Am−1|2 − |Am|2
)

= (j −m0) (m0 + j + 1) .
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On the left-hand side the terms in the sum 
an
el ea
h other ex
ept for the boundary terms:

|Am0
|2 − |Aj |2 = |Am0

|2 = (j −m0) (m0 + j + 1) .

This gives us the expression for the 
oe�
ients:

|Am|2 = (j −m)(j +m+ 1).

As expe
ted, the two zeros of this expression 
orrespond to m
max

= j and m
min

− 1 = −(j + 1). Thus we 
on
lude that

m
min

= −m
max

.

Finally, sin
e all m di�er by one, the expression m
max

−m
min

must be a non-negative integer:

m
max

−m
min

= 2j ∈ N+.

Classi�
ation of su(2) irreps

We 
on
lude that �nite-dimensional irredu
ibles of su(2) are labeled by a nonnegative integer j 
alled the spin of the

irrep. The spin-j irrep has eigenve
tors of H with eigenvalues all the way from −j to j. That gives the dimensionality of

the spin-j irrep:

r = dimρ = j − (−j) + 1 = 2j + 1.

Note the two important fa
ts:

1. If we had several series of eigenve
tors of H with all series 
onsisting of eigenvalues whi
h di�er by one but with

an arbitrary shift between the eigenvalues from di�erent series, then our initial assumption that we are dealing

with an irredu
ible representation is wrong. The independent series des
ribe di�erent irreps and our (redu
ible)

representation under 
onsideration is a dire
t sum of these irreps.

2. We are only 
onsidering �nite-dimensional representations here. The 
lassi�
ation of in�nite-dimensional represen-

tations is di�erent.

Finally, let's reprodu
e some of the low-dimensional irreps of su(2) expli
itly.

The spin-0 irrep

The spin-0 (trivial) irrep is 1-dimensional, with

H = E = F = X = Y = Z = (0) .

All 
ommutation relations trivially hold.

The Casimir operator is also zero.

The spin-1/2 (fundamental) irrep

The 2-dimensional spin-1/2 irrep is 
alled fundamental for reasons that will be
ome 
lear later. Lets 
onstru
t it.

1. First we have to 
al
ulate the values of the 
oe�
ients Am:

Am = eiϕm

√

(j −m)(j +m+ 1),

Bm = e−iϕm

√

(j −m)(j +m+ 1),

where ϕm is an arbitrary phase that does not in�uen
e the resulting irrep (the irreps with di�erent ϕm are related

through isomorphisms). We substitute j = 1/2 and the two relevant values of m whi
h are m = ±1/2 and take

ϕ−1/2 = 0 for 
onvenien
e:

A1/2 = B1/2 = 0,

A−1/2 = B−1/2 = 1,
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2. Re
all that it means that

E
∣

∣Ψ−1/2

〉

= A−1/2

∣

∣Ψ1/2

〉

=
∣

∣Ψ1/2

〉

,

F
∣

∣Ψ1/2

〉

= B−1/2

∣

∣Ψ−1/2

〉

=
∣

∣Ψ−1/2

〉

.

3. Take the basis ve
tors to be

∣

∣Ψ1/2

〉

=

(

1
0

)

,
∣

∣Ψ−1/2

〉

=

(

0
1

)

.

The matrix representation of E and F follows immediately:

E =

(

0 1
0 0

)

, F =

(

0 0
1 0

)

.

4. Remember how H |Ψm〉 = m |Ψm〉? This immediately gives the matrix representation of H :

H =

(

1/2 0
0 −1/2

)

.

5. We 
an now re
over the matri
es for the basis 
orresponding to the de�nition of su(2) whi
h is {X,Y, Z}:

X =
E + F

2i
=

(

0 − i
2

− i
2

0

)

,

Y =
F − E

2
=

(

0 − 1

2
1

2
0

)

,

Z =
H

i
=

(

− i
2

0
0 i

2

)

.

I leave it to the reader to show that {E,F,H,X, Y, Z} satisfy the 
ommutation relations of sl(2) ∼ su(2).

We have just 
al
ulated the expli
it formulas for the spin-1/2 irredu
ible representation of su(2). It is exa
tly the well-

known basis given by the generators

tα = − i

2
σα,

where σα are the three Pauli matri
es. Indeed,

X = − i

2
σ1 = − i

2

(

0 1
1 0

)

= t1,

Y = − i

2
σ2 =

i

2

(

0 −i
i 0

)

= t2,

Z = − i

2
σ3 = − i

2

(

1 0
0 −1

)

= t3.

Thus the spin-1/2 irrep of su(2) is given by the Pauli matri
es.

The Casimir operator 
an be evaluated expli
itly:

C = X†X + Y †Y + Z†Z =

(

3

4
0

0 3

4

)

=
3

4
· I.

You might wonder why we use Hermissian 
onjugation in the Casimir. The is a
tually be
ause the enveloping algebra is

a C∗
algebra. For the purposes of this introdu
tion it is just not important.

The generi
 formula for the Casimir reads

Cj = j(j + 1) · I,
whi
h 
oin
ides with the value 3/4 for spin-1/2.
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The spin-1 (adjoint) irrep

The next irrep in our series is the 3-dimensional spin-1 irrep. The fa
t that its dimensionality equals the dimensionality of

the Lie algebra is not a

idental: it is easy to prove that it is isomorphi
 to the adjoint representation of so(3) ∼ sl(2) ∼
su(2). Lets 
onstru
t it.

1. First we have to 
al
ulate the values of the 
oe�
ients Am:

Am = eiϕm

√

(j −m)(j +m+ 1),

Bm = e−iϕm

√

(j −m)(j +m+ 1),

We substitute j = 1 and the three relevant values of m whi
h are m ∈ {−1, 0, 1} and take ϕ... = 0 for 
onvenien
e:

A1 = B1 = 0,

A0 = B0 =
√
2

A−1 = B−1 =
√
2,

2. Re
all that it means that

E |Ψ−1〉 = A−1 |Ψ0〉 =
√
2 |Ψ0〉 ,

E |Ψ0〉 = A0 |Ψ1〉 =
√
2 |Ψ1〉 ,

F |Ψ1〉 = A0 |Ψ0〉 =
√
2 |Ψ0〉 ,

F |Ψ0〉 = A−1 |Ψ−1〉 =
√
2 |Ψ−1〉 .

3. Take the basis ve
tors to be

|Ψ1〉 =





1
0
0



 , |Ψ0〉 =





0
1
0



 , |Ψ−1〉 =





0
0
1



 .

The matrix representation of E and F follows immediately:

E =





0
√
2 0

0 0
√
2

0 0 0



 , F =





0 0 0√
2 0 0

0
√
2 0



 .

4. The matrix representation of H is straightforward:

H =





1 0 0
0 0 0
0 0 −1



 .

5. We 
an now re
over the matri
es for the basis 
orresponding to the de�nition of su(2) whi
h is {X,Y, Z}:

X =
E + F

2i
=







0 − i√
2

0

− i√
2

0 − i√
2

0 − i√
2

0






,

Y =
F − E

2
=







0 − 1√
2

0
1√
2

0 − 1√
2

0 1√
2

0






,

Z =
H

i
=





−i 0 0
0 0 0
0 0 i



 .
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The reader 
an 
he
k that the 
ommutation relations hold. This is related to the standard so(3) basis (the adjoint basis
of the algebra)

X → θ23 =





0 0 0
0 0 1
0 −1 0



 ,

Y → θ13 =





0 0 1
0 0 0
−1 0 0



 ,

Z → θ12 =





0 1 0
−1 0 0
0 0 0





through a 
hange of basis (�nd one).

The Casimir operator 
an be evaluated expli
itly:

C = X†X + Y †Y + Z†Z =





2 0 0
0 2 0
0 0 2



 = 2 · I,

whi
h 
oin
ides with the general formula

Cj = j(j + 1) · I.

Tensor produ
ts and intertwiners

This se
tion 
an be skipped on the �rst read.

To any Lie algebra we asso
iate a re
oupling theory. It tells us how tensor produ
ts of irreps (whi
h are redu
ible in

general) 
an be expanded in dire
t sums of irredu
ibles.

For su(2) the general formula is available:

j1 ⊗ j2 = |j1 − j2| ⊕ |j1 − j2|+ 1⊕ · · · ⊕ (j1 + j2) .

All irreps between spins |j1 − j2| and (j1 + j2) enter in this series either one time or zero times (depending on whether

the spin is integer or half-integer). For example, 
onsider

1

2
⊗ 1

2
= 0⊕ 1.

This formula tells us that the tensor produ
t of two 2-dimensional fundamental spin-1/2 irreps is equivalent to the dire
t

sums of trivial and adjoint.

A spe
ial kind of tensors are the intertwining tensors or intertwiners. These have k indi
es, ea
h one in di�erent (!)

representations of the same Lie algebra. The de�ning property is that the tensor is invariant under any algebra element

a
ting simultaneously on all of the indi
es.

For the 
ase of su(2) it is easy to �nd intertwiners from the re
oupling theory. For example, if I wanted to �nd 3-valent

intertwiners with two irreps being the spin-1/2 and another spin-1/2, I would only �nd the intertwiners between

(

1

2
, 1

2
, 0
)

and

(

1

2
, 1

2
, 1
)

be
ause of the tensor produ
t

1

2
⊗ 1

2
.

Generi
 representation theory

We would now like to generalize the results from the previous se
tion to the general 
ase of an arbitrary semisimple Lie

algebra.
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Cartan subalgebra

First we need a generalization of the element h of sl(2) whi
h we've used for the spe
tral de
omposition of irreps. In the

general 
ase it is played by the Cartan subalgebra.

The Cartan subalgebra is de�ned to be the linear span of the largest subset of inter
ommuting generators. That is, the

Lie bra
kets of the elements of the Cartan subalgebra vanish.

The dimensionality r of the Cartan subalgebra is 
alled the rank of the Lie algebra.

For example, for the 
ase of su(2) the rank is equal to 1 and any generator 
an be 
hosen as a basis of the 1-dimensional

Cartan subalgebra. We've 
hosen h, but a
tually this 
hoi
e is purely 
onventional.

Lets illustrate the 
on
ept of Cartan subalgebra on a less trivial example: the 8-dimensional Lie algebra su(3). Instead

of writing down the 
ommutation relations (of whi
h there are 28) it is more 
onvenient to give a de�ning representation

of su(3), that is, a representation, whi
h we use to 
al
ulate the stru
ture 
onstants and de�ne the algebra. The de�ning

representation of su(3) 
an be 
hosen arbitrarily, but the most 
onvenient is one of its two fundamental representations

(the terminology will be
ome 
lear later) given by the 8 Gell-Mann matri
es:

λ1 =





0 1 0
1 0 0
0 0 0



 ,

λ2 =





0 −i 0
i 0 0
0 0 0



 ,

λ3 =





1 0 0
0 −1 0
0 0 0



 ,

λ4 =





0 0 1
0 0 0
1 0 0



 ,

λ5 =





0 0 −i
0 0 0
i 0 0



 ,

λ6 =





0 0 0
0 0 1
0 1 0



 ,

λ7 =





0 0 0
0 0 −i
0 i 0



 ,

λ8 =







1√
3

0 0

0 1√
3

0

0 0 − 2√
3






.

The Cartan subalgebra is formed by the linear span of {λ3, λ8} (it 
an be shown that they inter
ommute while all the

other basis elements don't 
ommute with both of them at the same time). Thus, the rank of the 8-dimensional Lie algebra

su(3) is 2.

Cartan-Weyl basis

We denote the generators of the Cartan subalgebra by ci with i running through 1..r.

The purpose of this se
tion is to generalize the notion of raising/lowering operators. Remember how in the su(2) 
ase we
had

[h, e] = e,

[h, f ] = −f?

10



Well, in the general 
ase this 
an be mimi
ked by requiring the remaining generators to satisfy the eigenve
tor equation

for the adjoint a
tion of the Cartan subalgebra generators:

[ci, e~α] = αie~α.

This depends on a 
olle
tion of roots � ve
tors in the dual to the Cartan subalgebra spa
e denoted by ~α. The 
oordinates
with respe
t to the basis of Cartan generators are denoted by αi.

To ea
h root ~α we asso
iate an element e~α of the Lie algebra 
hosen as an eigenve
tor of the adjoint a
tion of Cartans

with eigenvalues being exa
tly the 
oordinates of the root.

The Cartan-Weyl basis is most 
onvenient for representation theory. It 
onsists of two parts:

1. The generators of the Cartan subalgebra labeled by ci with i running through 1..r.

2. The root elements e~α asso
iated to roots ~α in the root system. The de�ning equation for the Weyl part of the

Cartan-Weyl basis is

[ci, e~α] = αie~α.

An example: the A2 root system

Lets try to 
al
ulate the Cartan-Weyl basis for su(3). We have rank 2, thus the Cartan subalgebra and the root system

(whi
h is dual to the Cartan subalgebra) are 2-dimensional. The roots are represented by 2-dimensional ve
tors.

How many roots are there? Well, the total number of generators is the dimensionality of the algebra, whi
h is 8. Two

generators belong to the Cartan subalgebra. The remaining 6 generators form the 6 roots of the A2 root system:

The pi
ture provides some useful information. For example, just from looking at the pi
ture I know the following 
om-

mutation relations:

[c1, e~α] = e~α,

[c2, e~α] = 0,
[

c1, e~β

]

= −1

2
e~β ,

[

c2, e~β

]

=

√
3

2
e~β ,

These are, of 
ourse, spe
ial 
ases of the de�ning formula

[ci, e~α] = αie~α.

The roots ~α and

~β are 
alled simple: they form the basis in the root system.
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Raising and lowering with roots

Consider a �nite-dimensional irredu
ible representation ρ of the semisimple Lie algebra g. We use the Cartan generators

as operators for the spe
tral de
omposition of the representations into 1-dimensional eigenspa
es of Cartan generators.

We denote by |Ψ~a〉 an eigenspa
e of the Cartan subalgebra de�ned by a weight ve
tor ~a on the root spa
e. The weight

ve
tors are analogous to the number m in the 
ase of su(2). The de�ning equation is

Ci |Ψ~a〉 = ρ (ci) |Ψ~a〉 = ai |Ψ~a〉 .

We want to understand how the root ve
tor e~α a
ts on this state. For this, by analogy with the su(2) 
ase, we examine

the state

|Φ〉 = E~α |Ψ~a〉 = ρ (e~α) |Ψ~a〉 .
We hope that just like in the su(2) 
ase this will turn out to be the eigenstate of Cartans. This is indeed true:

Ci |Φ〉 = CiE~α |Ψ~a〉 = (E~αCi + [Ci, E~α]) |Ψ~a〉 =

= (aiE~α + αiE~α) |Ψ~a〉 = (ai + αi) |Φ〉 .

When a root ve
tor e~α a
ts on the state with weight ~a, the resulting state is also an eigenstate of the Cartan subalgebra

with resulting weight

~b = ~a+ ~α.

Consider the trivial 
ase of su(2) again. Here the rank is 1 and we have two roots:

e1 = e,

e−1 = f.

The a
tion of these roots on the eigenstate of the Cartan c1 = h adds 1 and -1 to the weight. This is exa
tly raising/lowering

of the eigenvalue of h!

Thus, the generalization of the raising/lowering is ve
tor addition of the root ve
tor and the weight ve
tor in the linear

spa
e of the root system, dual to the Cartan subalgebra.

Weyl-Weyl Lie bra
kets

We have three types of Lie bra
kets in the algebra expanded over the Cartan-Weyl basis:

1. Cartan-Cartan Lie bra
kets are all zero: [ci, cj ] = 0. It is the de�nition of the Cartan subalgebra.

2. The Cartan-Weyl Lie bra
kets are determined by roots. It is hard to overemphasize the importan
e of this formula,

so I am going to write it down another time (probably third of fourth): [ci, e~α] = αie~α.

3. The Weyl-Weyl Lie bra
kets, or Lie bra
kets between roots are those whi
h we haven't 
onsidered yet.

In order to obtain a generalization of the re
ursion relations we have to 
onsider the Lie bra
kets between roots. It is the

subje
t of the present se
tion. So lets work out these bra
kets. We have (by the Ja
obi identity)

[

ci,
[

e~α, e~β

]]

+
[

e~α,
[

e~β, ci

]]

+
[

e~β, [ci, e~α]
]

= 0.

By substituting the formula for the Cartan-Weyl bra
kets we have

[

ci,
[

e~α, e~β

]]

− βi

[

e~α, e~β

]

+ αi

[

e~β, e~α

]

,

[

ci,
[

e~α, e~β

]]

= (αi + βi)
[

e~α, e~β

]

.

Thus,

[

e~α, e~β

]

is proportional to e~α+~β with some yet undetermined 
oe�
ient. There are two remarks that I would like

to give:

1. Note that

[

e~α, e~β

]


hanges sign if we repla
e α ↔ β, while e~α+~β seemingly doesn't. This is a
tually absolutely

normal, be
ause we haven't 
onsidered the proportionality 
oe�
ient. This 
oe�
ient 
hanges sign.

2. Note how this is similar to the a
tion of roots on states with weights in some representation ρ. This is not a

idental,
in fa
t, roots are weights in the adjoint representation where the a
tion of algebra elements is given by the Lie bra
ket.
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Killing form and normalization

The 
oe�
ient 
an be 
al
ulated for a spe
ial 
ase of ~α+ ~β = 0 (
orresponding to rasing/lowering). For this 
ase, [e~α, e−~α]
is proportional for e~0, but there is no root with

~0, sin
e if there was, it would 
ommute with all of the Cartan generators

and we would in
lude it in the Cartan subalgebra. We 
on
lude that [e~α, e−~α] lies in the Cartan subalgebra:

[e~α, e−~α] = qici.

The 
oe�
ients qi depend on the normalization of the basis, but we 
an �x this by evaluating the Killing form on the Lie

algebra:

∀a, b ∈ g : g(a, b) = tr [ada · adb] .
The Killing form is by de�nition equal to the tra
e of produ
ts of adjoint-representation marti
es asso
iated with Lie

algebra elements. This is why it is often 
alled the invariant tra
e.

We impose the following normalization 
ondition on the Cartan generators and on roots:

g(ci, cj) = δij ,

g(e~α, e~β) = δ~α,−~β .

The 
oe�
ients qi 
an then be 
al
ulated:

g (ci, [e~α, e−~α]) = qjg(ci, cj) = qi.

But on the other hand,

g (ci, [e~α, e−~α]) = tr ([adci, ade~α] · ade−~α) = αitr (ade~α · ade−~α) = αi.

Thus, qi = αi and we have

[e~α, e−~α] = αici.

Generi
 re
ursion relations

The next thing to do is to introdu
e the 
oe�
ients analogous to Am and Bm from the su(2) 
ase:

E~α |Ψ~a〉 = A~α,~a |Ψ~a+~α〉 .
Note that there is no need for the letter B: the raising and lowering operators are on the equal footing, the 
anoni
al

pairs 
orresponding to the generators asso
iated to the opposite roots.

By analogy with su(2), we would like to derive two re
ursive relations for A~α,~a. By a
ting on |Ψ~a〉 with E−~αE~α −E~αE−~α

we get:

E−~αE~α |Ψ~a〉 = A~a,~αE−~α |Ψ~a+~α〉 = A~a,~αA~a+~α,−~α |Ψ~a〉 ,
E~αE−~α |Ψ~a〉 = A~a,−~αE~α |Ψ~a−~α〉 = A~a,−~αA~a−~α,~α |Ψ~a〉 ,

E−~αE~α − E~αE−~α = αiCi,

(A~a,~αA~a+~α,−~α −A~a,−~αA~a−~α,~α) |Ψ~a〉 = αiCi |Ψ~a〉 = αiai |Ψ~a〉 .

We arrive at the following re
ursion relation:

A~a,~αA~a+~α,−~α −A~a,−~αA~a−~α,~α = ~α · ~a.

The se
ond re
ursion relation is derived through unitarity (by analogy with the su(2) 
ase). We 
hoose the Cartan

generators to be hermitian and the root ve
tors to 
hange the sign of the root upon 
onjugation:

C†
i = Ci,

E†
~α = E−~α.

Then we have

〈Ψ~a+~α|E~α |Ψ~a〉 = A~a,~α 〈Ψ~a+~α| Ψ~a+~α〉 = A~a,~α;

〈Ψ~a+~α|E†
−~α |Ψ~a〉 = 〈Ψ~a|E−~α |Ψ~a+~α〉∗ = A∗

~a+~α,−~α 〈Ψ~a| Ψ~a〉 = A∗
~a+~α,−~α;

E~α = E†
−~α =⇒ A~a+~α,−~α = A∗

~a,~α.

Combining the two relations, we obtain:

|A~a−~α,~α|2 − |A~a,~α|2 = ~a · ~α.
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Solving generi
 re
ursion relations

Just like in the su(2) 
ase we are looking for �nite-dimensional irredu
ible representations of our Lie algebra. Thus there

must be a minimal and maximal weights

~a
min

= ~a− q~α, ~a
max

= ~a+ p~α

for any root ~α. By analogy with the su(2) 
ase we add the re
ursion relations for all weights ~a between ~a
min

and ~a
max

and obtain:

|A~a−q~α,~α|2 = (p+ q + 1) ·
(

~a · ~α+ ~α · ~α · (p− q)

2

)

.

For the lowest weight we have

|A~a−q~α,~α|2 = 0

whi
h has two solutions:

1. p+ q + 1 = 0

2.

~a·~α
~α·~α = q−p

2

The �rst solution was there in the su(2) 
ase. It gives 
ontribution from the weight ~a to the dimensionality of the irrep

under 
onsideration, just like 2j + 1 gives 
ontribution to the dimensionality of the spin-j irrep of su(2).

The se
ond relation is parti
ularly interesting. We will 
ome to it later.

Classifying representations of Lie algebras

Finite-dimensional irredu
ible representations are 
lassi�ed by the highest weights of simple roots. They 
orrespond to

the weight diagrams � patterns on the root system with points 
onne
ted by root ve
tors. The root system itself is a

weight diagram of the adjoint representation.

As an example we give the weight diagram of the �rst fundamental representation of su(3):

In the �avour SU(3) model it 
orresponds to the three �avours of quarks (�u� for �up�, �d� for �down�, �s� for �strange�). It

is worth mentioning that the modern SU(3) theory is based on 
olors and the �avour symmetry is 
onsidered approximate.

The irrep is 3-dimensional and 
an be de
omposed in three 1-dimensional subspa
es whi
h belong to the spe
tra of Cartan

generators. For example, for the �u� quark

c1 |u〉 =
1

2
|u〉 .
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This 
an be read o� from the x-
oordinate of the �u� point.

The a
tion of roots on these subspa
es is given by the ve
tor addition in the root spa
e. The e~α ve
tor from the root

diagram above, for example, takes |d〉 to |u〉 (with some 
oe�
ient), while the e~β ve
tor takes |s〉 to |d〉 (also with some


oe�
ient).

Just like we did with the fundamental irrep of su(2) and Pauli matri
es, the representation matri
es 
an be 
onstru
ted

to give the Gell-Mann matri
es. It is a long and tedious 
al
ulation, so I am going to omit it here, but 
arrying it out

would 
ertainly help to get more �uent in the subje
t.

In 
ase of su(3) another fundamental representation exists 
alled the se
ond fundamental representation. Its weight

diagram 
an be obtained from the diagram for the �rst fundamental representation by rotating it by π.

Classi�
ation of semisimple Lie algebras

From the previous se
tion we learned that any semisimple Lie algebra with rank r and dimensionality n is des
ribed by a

r-dimensional root system 
onsisting of n− r roots. Of those, r roots are simple.

Dynkin diagrams

The strange se
ond solution for the re
ursion relation 
an be rewritten for the adjoint representation. Weights be
ome

roots, and the solution reads:

~α · ~β
~α · ~α =

q − p

2

for all roots ~α and

~β. This 
an be interpreted as follows: the proje
tion of any root on any other root has half-integer

length.

A Dynkin root system is an r-dimensional root system 
onsisting of r simple roots with the following properties:

1. Any two simple roots are linearly independent;

2. For any two roots ~α and

~β the proje
tion of one on the other has half-integer length;

3. The system is not redu
ible to a sum of subsystems orthogonal to ea
h other.

We 
hoose to label simple roots by nodes of a 
ertain graph 
alled the Dynkin diagram.

In order to satisfy the se
ond requirement the angle between simple roots 
an only have the following values:

1. π/2 � in this 
ase we don't draw an edge between the nodes

2. 2π/3 � in this 
ase we draw an edge between the nodes

3. 3π/4 � in this 
ase we draw a double edge between the nodes

4. 5π/6 � in this 
ase we draw a triple edge between the nodes

5. the 
ases when ϕ < π/2 
an be treated by 
hoosing another subset of simple roots

Also we would 
hoose to paint the 
ir
le representing the node of the graph if the length of the root asso
iated with this

node is smaller than the lengths of nearby roots.

Semisimple Lie algebras

We've redu
ed the problem of 
lassi�
ation of semisimple Lie algebras to simple 
ombiniatori
s. We have to enumerate

all the graphs whi
h give rise to a

eptable Dynkin root systems.

These are given by the four in�nite series An, Bn, Cn and Dn as well as by �ve ex
eptional Lie algebras G2, F4, E6, E7

and E8.

The Dynkin diagrams of these root system are drawn below.
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Notably, the ex
eptional Lie algebras have been a subje
t of theories of uni�
ation of fundamental for
es. The E8 × E8

is one of the possible gauge groups of heteroti
 superstrings. Also, E8 has been used by Lisi to 
onstru
t a (spe
ulative)

model for the uni�
ation of all for
es. In the same manner, G2 is used by Lisi to unify quarks with gluons in a single

g2-valued super
onne
tion.

Rank-2 root systems

I in
lude the pi
tures of the rank-2 root systems:

• We have already en
ountered the A2 root system of the su(3) Lie algebra:

• The B2 ∼ C2 root system:
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• D2 is te
hni
ally not a valid root system, as it is equal to the sum of two A1 root systems. This is why so(4) =
su(2)⊕ su(2) as A1 is the root system of su(2) ∼ so(3) and D2 = A1 ∪ A1 is the root system of so(4).

• The G2 root system:

Cal
ulating root systems

I've written a simple Haskell s
ript whi
h 
an generate the 
oordinates of roots from the Dynkin diagram. It uses Wolfram

Mathemati
a to perform symboli
 
omputations. It is available on my github.

Examples of 
al
ulations:

For the (rank-1) A1 root system (the su(2) Lie algebra):

rootsLen = 2;

r[1℄ = {1};

r[2℄ = {-1};
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For the (rank-2) A2 root system (the su(3) Lie algebra):

rootsLen = 6;

r[1℄ = {1, 0};

r[2℄ = {-1/2, Sqrt[3℄/2};

r[3℄ = {-1, 0};

r[4℄ = {1/2, Sqrt[3℄/2};

r[5℄ = {1/2, -Sqrt[3℄/2};

r[6℄ = {-1/2, -Sqrt[3℄/2};

For the (rank-4) D4 root system (the one with the triality symmetry):

rootsLen = 24;

r[1℄ = {1, 0, 0, 0};

r[2℄ = {-1/2, Sqrt[3℄/2, 0, 0};

r[3℄ = {-1/2, -1/(2*Sqrt[3℄), Sqrt[2/3℄, 0};

r[4℄ = {-1/2, -1/(2*Sqrt[3℄), -(1/Sqrt[6℄), 1/Sqrt[2℄};

r[5℄ = {-1, 0, 0, 0};

r[6℄ = {1/2, Sqrt[3℄/2, 0, 0};

r[7℄ = {1/2, -1/(2*Sqrt[3℄), Sqrt[2/3℄, 0};

r[8℄ = {1/2, -1/(2*Sqrt[3℄), -(1/Sqrt[6℄), 1/Sqrt[2℄};

r[9℄ = {1/2, -Sqrt[3℄/2, 0, 0};

r[10℄ = {1/2, 1/(2*Sqrt[3℄), -Sqrt[2/3℄, 0};

r[11℄ = {1/2, 1/(2*Sqrt[3℄), 1/Sqrt[6℄, -(1/Sqrt[2℄)};

r[12℄ = {-1/2, -Sqrt[3℄/2, 0, 0};

r[13℄ = {-1/2, 1/(2*Sqrt[3℄), -Sqrt[2/3℄, 0};

r[14℄ = {-1/2, 1/(2*Sqrt[3℄), 1/Sqrt[6℄, -(1/Sqrt[2℄)};

r[15℄ = {0, 1/Sqrt[3℄, Sqrt[2/3℄, 0};

r[16℄ = {0, 1/Sqrt[3℄, -(1/Sqrt[6℄), 1/Sqrt[2℄};

r[17℄ = {0, -(1/Sqrt[3℄), 1/Sqrt[6℄, 1/Sqrt[2℄};

r[18℄ = {0, -(1/Sqrt[3℄), -Sqrt[2/3℄, 0};

r[19℄ = {0, -(1/Sqrt[3℄), 1/Sqrt[6℄, -(1/Sqrt[2℄)};

r[20℄ = {0, 1/Sqrt[3℄, -(1/Sqrt[6℄), -(1/Sqrt[2℄)};

r[21℄ = {-1/2, 1/(2*Sqrt[3℄), 1/Sqrt[6℄, 1/Sqrt[2℄};

r[22℄ = {1/2, -1/(2*Sqrt[3℄), -(1/Sqrt[6℄), -(1/Sqrt[2℄)};

r[23℄ = {1/2, 1/(2*Sqrt[3℄), 1/Sqrt[6℄, 1/Sqrt[2℄};

r[24℄ = {-1/2, -1/(2*Sqrt[3℄), -(1/Sqrt[6℄), -(1/Sqrt[2℄)};

Rotations in 8 dimensions are spe
ial be
ause of this triality symmetry.
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