
Representations of Lie algebras

I introdue the basis of the generi representation theory for simple and semisimple Lie algebras. The onepts of irrre-

duible representations (irreps), intertwiners, Casimir operators, Cartan subalgebra, root vetors, weight vetors, Dynkin

diagrams et are explained. I mention the general reipy for lassifying the �nite-dimensional irreduible representations

of simple and semisimple Lie algebras, as well as the lassi�ation of �nite-dimensional simple and semisimple Lie algebras.

Basi de�nitions

The Lie algebra

A Lie algebra g over the number �eld K is a linear vetor spae equipped with an antisymmetri bilinear operation

satisfying the Jaobi identity alled the Lie braket:

1. bilinearity: ∀a, b ∈ g, p, q ∈ K : [pa+ qb, c] = p[a, c] + q[b, c],

2. antisymmetriity: ∀a, b ∈ g : [a, b] = −[b, a],

3. Jaobi identity: ∀a, b, c ∈ g : [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0.

Note that the Lie braket is not only nonommutative, but also nonassoiative. It is the reason why it is denoted [a, b]
instead of a · b. In what follows we will work with the number �eld of omplexes C unless expliitly stated otherwise.

Struture onstants

Consider a basis in the Lie algebra:

g ∋ a = aαtα,

where α ∈ 1..n where n = dim g. The basis vetors tα are alled the generators of the algebra. The Lie braket of any two

algebra elements an be expanded over the basis of generators using its bilinearity:

[a, b] = [aαtα, b
βtβ ] = aαbβ[tα, tβ ].

Beause {tα} is a basis in the Lie algebra, any element of the algebra an be expanded over this basis, the [tα, tβ] being
no exeption. We arrive at

[a, b] = aαbβ fγ
αβtγ ,

where the oe�ients fγ
αβ are alled the struture onstants : they uniquely determine the struture of the Lie algebra.

More preisely, the struture of the algebra is determined by equivalene lasses of the struture onstants with respet

to the hanges of the basis. The transformation properties of the matrix fγ
αβ are niely enoded in the tensor notation:

the up and down indies transform under the usual transformation law.

The struture onstatnts are antisymmetri with respet to the two down indies. It is of ourse true in any basis of

generators as it is a tensor equation whih an hold either in all oordinates at one or in none. The Jaobi identity also

imposes an additional onstraint on the struture onstants.

Representations

An r-dimensional representation ρ of the Lie algebra is a linear funtion from the algebra to the spae of K-valued r × r
matries:

1. linearity: ∀a ∈ g, k ∈ K : ρ(ka) = kρ(a),

2. algebra struture: ∀a, b ∈ g : ρ([a, b]) = ρ(a)ρ(b)− ρ(b)ρ(a).
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As we see, the representation models the Lie braket as a ommutator of linear operators (matries) on some r-dimensional

linear spae. The number r is alled the dimension of the representation, and in general it is not equal to the dimension

of the algebra n!

Of ourse, a Lie algebra admits multiple representations of di�erent dimensions.

A subspae S of the representation spae is alled an invariant subspae if

∀a ∈ g : ρ(a)S ⊆ S.

A representation is alled irreduible if it doesn't have invariant subspaes exept for {0} and itself.

In simple words, if there is a nontrivial subspae of the representation that transforms in a self-ontained way under

the algebra elements, then the representation is reduible. Basially, it ontains a more fundamental building blok (the

projetion of itself on the mentioned subspae). Irreduible representations (irreps) are the ones whih don't ontain

a more fundamental building blok in themselves. Thus, they are themselves the fundamental building bloks of the

representation theory and are of primary interest for those who wish to lassify �nite-dimensional representations of a

given Lie algebra.

For every Lie algebra there is a speial representation alled the adjoint. It ats on the algebra itself by

ada |b〉 = |[a, b]〉 .

It is straightforward that the dimension of the adjoint representation is equal to the dimension of the algebra.

Enveloping algebra and Casimirs

For any Lie algebra g we an de�ne a universal enveloping algebra. It is an assoiative algebra of polynomials of the Lie

algebra generators, for whih the following holds:

∀a, b ∈ g : ab− ba = [a, b].

Here the assoiated produt is taken in the enveloping algebra, while on the right hand side we enounter the Lie algebra

braket.

The partiularly interesting for the representation theory are the speial elements of the enveloping algebra alled the

Casimir operators whih have the following property: they ommute with all elements of the Lie algebra (in the enveloping

algebra):

C : ∀a ∈ g : Ca = aC.

The exat form of Casimirs depends on the Lie algebra. It is important to keep in mind that Casimirs live in the universal

enveloping algebra, not in the original Lie algebra. In general Casimirs are polynomials over the Lie algebra generators.

Casimirs are partiularly important for representation theory beause of the theorem alled the Shur's lemma:

Shur's lemma: suppose we have two �nite-dimensional irreduible representations ρ1 and ρ2 of the same �nite-

dimensional Lie algebra g on two linear spaes V1 and V2 respetively and a linear operator f : V1 → V2 whih preserves

the struture of the algebra, meaning that

fρ1 = ρ2f.

Then,

1. f is either a zero map (whih maps any element of V1 to zero), or an isomorphism.

2. In ase V1 = V2 and ρ1 = ρ2, then f = λ · I is a multipliation on some number λ ∈ K.

As usual, I don't bother writing proofs of theorems in my notes. These an easily be found on the internet, and the

purpose of this note is to give an introdution to the subjet and state the most important results.

Now onsider a representation ρ of some Lie algebra g. The key fat is that ρ de�nes naturally a representation of the

universal enveloping algebra beause matries an be multiplied. Hene the Casimir an be represented as an r× r matrix

f on the representation spae V . Sine it by de�nition ommutes with the Lie algebra, the Shur's lemma is appliable

here. We end up with an assertion of f to be a multipliation by some number λ.

A onsequene of Shur's lemma: for any irrep ρ the Casimir operator is represented by a multipliation by some

number λ. Thus, irreduibles an be labeled by the values of Lie algebra Casimirs.
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Representation theory of su(2)

The su(2) Lie algebra

The su(2) Lie algebra is a simplest nontrivial example of the Lie algebra. It is 3-dimensional and de�ned by the following

Lie braket relations:

[tα, tβ ] = εαβγtγ .

These of ourse holds only in the basis used for de�ning the algebra, beause εαβγ doesn't have the proper transformation

properties like the ones struture onstants have.

The de�nition an be rewritten in a more expliit form:

[x, y] = z

[y, z] = x

[z, x] = y

for the three algebra generators {x, y, z}.
Interesting fat: the su(2) Lie algebra is equivalent to the so(3) Lie algebra of the rotation group in 3 spatial dimensions:

su(2) ∼ so(3).

We will see a lot of these �oinidental� equivalene relations between low-dimensional algebras. The lassi�ation theory

of Lie algebras by Dynkin (overed later in this post) explains their origins.

Another interesting fat: su(2) algebra is assoiative and is related to the vetor multipliation in 3 dimensions. In fat,

it exatly resembles the struture of vetor multipliation for the three basis vetors {x, y, z}.
The quadrati Casimir of su(2) is known from the quantum-mehanial theory of the angular momentum: it is equal to

C = x2 + y2 + z2.

It is easy to show with a piee of algebra that C ommutes with su(2) in its enveloping algebra:

Cx− xC = x3 + yyx+ zzx− x3 − xyy − xzz =

= yyx− xyy + zzx− xzz.

yyx− xyy = yyx− yxy + yxy − xyy = y(yx− xy) + (yx− xy)y =

= y[y, x] + [y, x]y = y(−z) + (−z)y = −(yz + zy);

zzx− xzz = zzx− zxz + zxz − xzz = z(zx− xz) + (zx− xz)z =

= z[z, x] + [z, x]z = zy + yz;

Cx− xC = −(yz + zy) + zy + yz = 0.

Analogously, we an show that

Cx− xC = Cy − yC = Cz − zC = 0.

This is su�ient to onstatate that C is a Casimir of su(2) and the irreps of su(2) are labeled by the value of C (aording

to the onsequene of the Shur's lemma).

The su(2) ∼ sl(2) relation and anonial basis

Consider another 3-dimensional Lie algebra sl(2) whih is de�ned by the Lie brakets

[h, e] = e

[h, f ] = −f

[e, f ] = 2h

for the three generators {e, f, h}.
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I laim that su(2) ∼ sl(2), that is that the two algebras are equivalent (related by an isomorphism). In order to support

my laim I have to provide the isomorphism between the vetor spaes and work out the ommutation relations in order

to prove that it preserves the struture of the Lie algebra:











e = ix− y

f = ix+ y

h = iz

The proof that this is in fat an isomorphism of algebras:

[h, e] = [iz, ix− y] = −[z, x]− i[z, y] = −y − i(−x) = ix− y = e

[h, f ] = [iz, ix+ y] = −[z, x] + i[z, y] = −y + i(−x) = −ix− y = −f

[e, f ] = [ix− y, ix+ y] = i[x, y]− i[y, x] = 2i[x, y] = 2iz = 2h

This in a typial example of an important fat: the Lie algebras with di�erent but related by a hange of basis struture

onstants are equivalent.

Raising and lowering operators

Consider an r-dimensional irreduible representation ρ of su(2) ∼ sl(2) on the representation spae V . Choose an eigen-

vetor |Ψm〉 of H = ρ(h) in V with eigenvalue m:

H |Ψm〉 = m |Ψm〉 .

We would like to exam the vetors

|Ψ+〉 = E |Ψm〉 = ρ(e) |Ψm〉 ,
|Ψ−〉 = F |Ψm〉 = ρ(f) |Ψm〉 .

In partiular, we want to see how H ats on them. Consider the following alulation:

H |Ψ+〉 = HE |Ψm〉 = (EH + [H,E]) |Ψm〉 = (EH + E) |Ψm〉 =

= (Em+ E) |Ψm〉 = (m+ 1) |Ψ+〉 ,

H |Ψ−〉 = HF |Ψ−〉 = (FH + [F,H ]) |Ψm〉 = (FH − F ) |Ψm〉 =
(Fm− F ) |Ψm〉 = (m− 1) |Ψ−〉 .

We onlude that |Ψ±〉 are also eigenvetors of H with eigenvalues m± 1. In general, we onlude that

|Ψ+〉 = Am |Ψm+1〉 ,

|Ψ−〉 = Bm−1 |Ψm−1〉
for some numeri oe�ients Am and Bm.

We see that E = ρ(e) and F = ρ(f) at as raising and lowering operators on any irrep of su(2): they inrease and

derease the eigenvalue of H = ρ(h) by one respetively. We arrive at the desription of su(2) irreps through the spetral

deomposition of H .

As we will see later, this situation is not unique to su(2). We will learn how to �nd analogues of the level operator H and

raising/lowering operators E,F in more omplex Lie algebras.
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Reursive relations

The last ommutation relation that we haven't used is

[E,F ] = 2H.

Lets apply this to the vetor |Ψm〉:
[E,F ] |Ψm〉 = EF |Ψm〉 − FE |Ψm〉 ;

EF |Ψm〉 = EBm−1 |Ψm−1〉 = Am−1Bm−1 |Ψm〉 ;
FE |Ψm〉 = FAm |Ψm+1〉 = AmBm |Ψm〉 ;

2H |Ψm〉 = 2m |Ψm〉 ;
(Am−1Bm−1 −AmBm) |Ψm〉 = 2m |Ψm〉 .

This gives the reursive relation for the numeri oe�ients Am and Bm:

Am−1Bm−1 −AmBm = 2m.

Another relation an be deriving by onsidering unitarity of the irrep. Suppose that X = ρ(x), Y = ρ(y) and Z = ρ(z)
an be represented as antihermitian matries (this is allowed by the ommutation relations between them). Then

E† = (iX − Y )† = iXY = F,

F † = (iX + Y )† = iX − Y = E,

H† = (iZ)† = iZ = H.

Consequently, supposing that the eigensystem of H is properly normalized, the following holds:

〈Ψm+1|E |Ψm〉 = Am 〈Ψm+1| Ψm+1〉 = Am,

〈Ψm+1|F † |Ψm〉 = 〈Ψm|F |Ψm+1〉∗ = B∗
m 〈Ψm| Ψm〉∗ = B∗

m,

F † = E =⇒ Am = B∗
m.

The reursive relation then beomes

|Am−1|2 − |Am|2 = 2m.

Solving the reursive relations

We've ome lose to the lassi�ation of all �nite-dimensional irreduible representations of su(2).

We are onsidering �nite-dimensional representations, thus there must be an eigenvetor of H with maximal possible

eigenvalue, and another one with minimal possible eigenvalue. We will all these eigenvalues

m
min

, m
max

.

Sine E |Ψm〉 ∼ |Ψm+1〉 and there ould be no eigenvalue greater than m
max

, we an only onlude that

E |Ψm
max

〉 = F |Ψm
min

〉 = |0〉 .

Or, in terms of the oe�ients,

Am
min

−1 = Am
max

= 0.

What we would like to do is to sum our reursive relation for m from some m0 + 1 to j = m
max

:

j
∑

m0+1

(

|Am−1|2 − |Am|2
)

= 2

j
∑

m0+1

m.

On the right-hand side there is an arithmeti progression, whih an be easily summed:

j
∑

m0+1

(

|Am−1|2 − |Am|2
)

= (j −m0) (m0 + j + 1) .
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On the left-hand side the terms in the sum anel eah other exept for the boundary terms:

|Am0
|2 − |Aj |2 = |Am0

|2 = (j −m0) (m0 + j + 1) .

This gives us the expression for the oe�ients:

|Am|2 = (j −m)(j +m+ 1).

As expeted, the two zeros of this expression orrespond to m
max

= j and m
min

− 1 = −(j + 1). Thus we onlude that

m
min

= −m
max

.

Finally, sine all m di�er by one, the expression m
max

−m
min

must be a non-negative integer:

m
max

−m
min

= 2j ∈ N+.

Classi�ation of su(2) irreps

We onlude that �nite-dimensional irreduibles of su(2) are labeled by a nonnegative integer j alled the spin of the

irrep. The spin-j irrep has eigenvetors of H with eigenvalues all the way from −j to j. That gives the dimensionality of

the spin-j irrep:

r = dimρ = j − (−j) + 1 = 2j + 1.

Note the two important fats:

1. If we had several series of eigenvetors of H with all series onsisting of eigenvalues whih di�er by one but with

an arbitrary shift between the eigenvalues from di�erent series, then our initial assumption that we are dealing

with an irreduible representation is wrong. The independent series desribe di�erent irreps and our (reduible)

representation under onsideration is a diret sum of these irreps.

2. We are only onsidering �nite-dimensional representations here. The lassi�ation of in�nite-dimensional represen-

tations is di�erent.

Finally, let's reprodue some of the low-dimensional irreps of su(2) expliitly.

The spin-0 irrep

The spin-0 (trivial) irrep is 1-dimensional, with

H = E = F = X = Y = Z = (0) .

All ommutation relations trivially hold.

The Casimir operator is also zero.

The spin-1/2 (fundamental) irrep

The 2-dimensional spin-1/2 irrep is alled fundamental for reasons that will beome lear later. Lets onstrut it.

1. First we have to alulate the values of the oe�ients Am:

Am = eiϕm

√

(j −m)(j +m+ 1),

Bm = e−iϕm

√

(j −m)(j +m+ 1),

where ϕm is an arbitrary phase that does not in�uene the resulting irrep (the irreps with di�erent ϕm are related

through isomorphisms). We substitute j = 1/2 and the two relevant values of m whih are m = ±1/2 and take

ϕ−1/2 = 0 for onveniene:

A1/2 = B1/2 = 0,

A−1/2 = B−1/2 = 1,
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2. Reall that it means that

E
∣

∣Ψ−1/2

〉

= A−1/2

∣

∣Ψ1/2

〉

=
∣

∣Ψ1/2

〉

,

F
∣

∣Ψ1/2

〉

= B−1/2

∣

∣Ψ−1/2

〉

=
∣

∣Ψ−1/2

〉

.

3. Take the basis vetors to be

∣

∣Ψ1/2

〉

=

(

1
0

)

,
∣

∣Ψ−1/2

〉

=

(

0
1

)

.

The matrix representation of E and F follows immediately:

E =

(

0 1
0 0

)

, F =

(

0 0
1 0

)

.

4. Remember how H |Ψm〉 = m |Ψm〉? This immediately gives the matrix representation of H :

H =

(

1/2 0
0 −1/2

)

.

5. We an now reover the matries for the basis orresponding to the de�nition of su(2) whih is {X,Y, Z}:

X =
E + F

2i
=

(

0 − i
2

− i
2

0

)

,

Y =
F − E

2
=

(

0 − 1

2
1

2
0

)

,

Z =
H

i
=

(

− i
2

0
0 i

2

)

.

I leave it to the reader to show that {E,F,H,X, Y, Z} satisfy the ommutation relations of sl(2) ∼ su(2).

We have just alulated the expliit formulas for the spin-1/2 irreduible representation of su(2). It is exatly the well-

known basis given by the generators

tα = − i

2
σα,

where σα are the three Pauli matries. Indeed,

X = − i

2
σ1 = − i

2

(

0 1
1 0

)

= t1,

Y = − i

2
σ2 =

i

2

(

0 −i
i 0

)

= t2,

Z = − i

2
σ3 = − i

2

(

1 0
0 −1

)

= t3.

Thus the spin-1/2 irrep of su(2) is given by the Pauli matries.

The Casimir operator an be evaluated expliitly:

C = X†X + Y †Y + Z†Z =

(

3

4
0

0 3

4

)

=
3

4
· I.

You might wonder why we use Hermissian onjugation in the Casimir. The is atually beause the enveloping algebra is

a C∗
algebra. For the purposes of this introdution it is just not important.

The generi formula for the Casimir reads

Cj = j(j + 1) · I,
whih oinides with the value 3/4 for spin-1/2.
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The spin-1 (adjoint) irrep

The next irrep in our series is the 3-dimensional spin-1 irrep. The fat that its dimensionality equals the dimensionality of

the Lie algebra is not aidental: it is easy to prove that it is isomorphi to the adjoint representation of so(3) ∼ sl(2) ∼
su(2). Lets onstrut it.

1. First we have to alulate the values of the oe�ients Am:

Am = eiϕm

√

(j −m)(j +m+ 1),

Bm = e−iϕm

√

(j −m)(j +m+ 1),

We substitute j = 1 and the three relevant values of m whih are m ∈ {−1, 0, 1} and take ϕ... = 0 for onveniene:

A1 = B1 = 0,

A0 = B0 =
√
2

A−1 = B−1 =
√
2,

2. Reall that it means that

E |Ψ−1〉 = A−1 |Ψ0〉 =
√
2 |Ψ0〉 ,

E |Ψ0〉 = A0 |Ψ1〉 =
√
2 |Ψ1〉 ,

F |Ψ1〉 = A0 |Ψ0〉 =
√
2 |Ψ0〉 ,

F |Ψ0〉 = A−1 |Ψ−1〉 =
√
2 |Ψ−1〉 .

3. Take the basis vetors to be

|Ψ1〉 =





1
0
0



 , |Ψ0〉 =





0
1
0



 , |Ψ−1〉 =





0
0
1



 .

The matrix representation of E and F follows immediately:

E =





0
√
2 0

0 0
√
2

0 0 0



 , F =





0 0 0√
2 0 0

0
√
2 0



 .

4. The matrix representation of H is straightforward:

H =





1 0 0
0 0 0
0 0 −1



 .

5. We an now reover the matries for the basis orresponding to the de�nition of su(2) whih is {X,Y, Z}:

X =
E + F

2i
=







0 − i√
2

0

− i√
2

0 − i√
2

0 − i√
2

0






,

Y =
F − E

2
=







0 − 1√
2

0
1√
2

0 − 1√
2

0 1√
2

0






,

Z =
H

i
=





−i 0 0
0 0 0
0 0 i



 .
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The reader an hek that the ommutation relations hold. This is related to the standard so(3) basis (the adjoint basis
of the algebra)

X → θ23 =





0 0 0
0 0 1
0 −1 0



 ,

Y → θ13 =





0 0 1
0 0 0
−1 0 0



 ,

Z → θ12 =





0 1 0
−1 0 0
0 0 0





through a hange of basis (�nd one).

The Casimir operator an be evaluated expliitly:

C = X†X + Y †Y + Z†Z =





2 0 0
0 2 0
0 0 2



 = 2 · I,

whih oinides with the general formula

Cj = j(j + 1) · I.

Tensor produts and intertwiners

This setion an be skipped on the �rst read.

To any Lie algebra we assoiate a reoupling theory. It tells us how tensor produts of irreps (whih are reduible in

general) an be expanded in diret sums of irreduibles.

For su(2) the general formula is available:

j1 ⊗ j2 = |j1 − j2| ⊕ |j1 − j2|+ 1⊕ · · · ⊕ (j1 + j2) .

All irreps between spins |j1 − j2| and (j1 + j2) enter in this series either one time or zero times (depending on whether

the spin is integer or half-integer). For example, onsider

1

2
⊗ 1

2
= 0⊕ 1.

This formula tells us that the tensor produt of two 2-dimensional fundamental spin-1/2 irreps is equivalent to the diret

sums of trivial and adjoint.

A speial kind of tensors are the intertwining tensors or intertwiners. These have k indies, eah one in di�erent (!)

representations of the same Lie algebra. The de�ning property is that the tensor is invariant under any algebra element

ating simultaneously on all of the indies.

For the ase of su(2) it is easy to �nd intertwiners from the reoupling theory. For example, if I wanted to �nd 3-valent

intertwiners with two irreps being the spin-1/2 and another spin-1/2, I would only �nd the intertwiners between

(

1

2
, 1

2
, 0
)

and

(

1

2
, 1

2
, 1
)

beause of the tensor produt

1

2
⊗ 1

2
.

Generi representation theory

We would now like to generalize the results from the previous setion to the general ase of an arbitrary semisimple Lie

algebra.
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Cartan subalgebra

First we need a generalization of the element h of sl(2) whih we've used for the spetral deomposition of irreps. In the

general ase it is played by the Cartan subalgebra.

The Cartan subalgebra is de�ned to be the linear span of the largest subset of interommuting generators. That is, the

Lie brakets of the elements of the Cartan subalgebra vanish.

The dimensionality r of the Cartan subalgebra is alled the rank of the Lie algebra.

For example, for the ase of su(2) the rank is equal to 1 and any generator an be hosen as a basis of the 1-dimensional

Cartan subalgebra. We've hosen h, but atually this hoie is purely onventional.

Lets illustrate the onept of Cartan subalgebra on a less trivial example: the 8-dimensional Lie algebra su(3). Instead

of writing down the ommutation relations (of whih there are 28) it is more onvenient to give a de�ning representation

of su(3), that is, a representation, whih we use to alulate the struture onstants and de�ne the algebra. The de�ning

representation of su(3) an be hosen arbitrarily, but the most onvenient is one of its two fundamental representations

(the terminology will beome lear later) given by the 8 Gell-Mann matries:

λ1 =





0 1 0
1 0 0
0 0 0



 ,

λ2 =





0 −i 0
i 0 0
0 0 0



 ,

λ3 =





1 0 0
0 −1 0
0 0 0



 ,

λ4 =





0 0 1
0 0 0
1 0 0



 ,

λ5 =





0 0 −i
0 0 0
i 0 0



 ,

λ6 =





0 0 0
0 0 1
0 1 0



 ,

λ7 =





0 0 0
0 0 −i
0 i 0



 ,

λ8 =







1√
3

0 0

0 1√
3

0

0 0 − 2√
3






.

The Cartan subalgebra is formed by the linear span of {λ3, λ8} (it an be shown that they interommute while all the

other basis elements don't ommute with both of them at the same time). Thus, the rank of the 8-dimensional Lie algebra

su(3) is 2.

Cartan-Weyl basis

We denote the generators of the Cartan subalgebra by ci with i running through 1..r.

The purpose of this setion is to generalize the notion of raising/lowering operators. Remember how in the su(2) ase we
had

[h, e] = e,

[h, f ] = −f?
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Well, in the general ase this an be mimiked by requiring the remaining generators to satisfy the eigenvetor equation

for the adjoint ation of the Cartan subalgebra generators:

[ci, e~α] = αie~α.

This depends on a olletion of roots � vetors in the dual to the Cartan subalgebra spae denoted by ~α. The oordinates
with respet to the basis of Cartan generators are denoted by αi.

To eah root ~α we assoiate an element e~α of the Lie algebra hosen as an eigenvetor of the adjoint ation of Cartans

with eigenvalues being exatly the oordinates of the root.

The Cartan-Weyl basis is most onvenient for representation theory. It onsists of two parts:

1. The generators of the Cartan subalgebra labeled by ci with i running through 1..r.

2. The root elements e~α assoiated to roots ~α in the root system. The de�ning equation for the Weyl part of the

Cartan-Weyl basis is

[ci, e~α] = αie~α.

An example: the A2 root system

Lets try to alulate the Cartan-Weyl basis for su(3). We have rank 2, thus the Cartan subalgebra and the root system

(whih is dual to the Cartan subalgebra) are 2-dimensional. The roots are represented by 2-dimensional vetors.

How many roots are there? Well, the total number of generators is the dimensionality of the algebra, whih is 8. Two

generators belong to the Cartan subalgebra. The remaining 6 generators form the 6 roots of the A2 root system:

The piture provides some useful information. For example, just from looking at the piture I know the following om-

mutation relations:

[c1, e~α] = e~α,

[c2, e~α] = 0,
[

c1, e~β

]

= −1

2
e~β ,

[

c2, e~β

]

=

√
3

2
e~β ,

These are, of ourse, speial ases of the de�ning formula

[ci, e~α] = αie~α.

The roots ~α and

~β are alled simple: they form the basis in the root system.
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Raising and lowering with roots

Consider a �nite-dimensional irreduible representation ρ of the semisimple Lie algebra g. We use the Cartan generators

as operators for the spetral deomposition of the representations into 1-dimensional eigenspaes of Cartan generators.

We denote by |Ψ~a〉 an eigenspae of the Cartan subalgebra de�ned by a weight vetor ~a on the root spae. The weight

vetors are analogous to the number m in the ase of su(2). The de�ning equation is

Ci |Ψ~a〉 = ρ (ci) |Ψ~a〉 = ai |Ψ~a〉 .

We want to understand how the root vetor e~α ats on this state. For this, by analogy with the su(2) ase, we examine

the state

|Φ〉 = E~α |Ψ~a〉 = ρ (e~α) |Ψ~a〉 .
We hope that just like in the su(2) ase this will turn out to be the eigenstate of Cartans. This is indeed true:

Ci |Φ〉 = CiE~α |Ψ~a〉 = (E~αCi + [Ci, E~α]) |Ψ~a〉 =

= (aiE~α + αiE~α) |Ψ~a〉 = (ai + αi) |Φ〉 .

When a root vetor e~α ats on the state with weight ~a, the resulting state is also an eigenstate of the Cartan subalgebra

with resulting weight

~b = ~a+ ~α.

Consider the trivial ase of su(2) again. Here the rank is 1 and we have two roots:

e1 = e,

e−1 = f.

The ation of these roots on the eigenstate of the Cartan c1 = h adds 1 and -1 to the weight. This is exatly raising/lowering

of the eigenvalue of h!

Thus, the generalization of the raising/lowering is vetor addition of the root vetor and the weight vetor in the linear

spae of the root system, dual to the Cartan subalgebra.

Weyl-Weyl Lie brakets

We have three types of Lie brakets in the algebra expanded over the Cartan-Weyl basis:

1. Cartan-Cartan Lie brakets are all zero: [ci, cj ] = 0. It is the de�nition of the Cartan subalgebra.

2. The Cartan-Weyl Lie brakets are determined by roots. It is hard to overemphasize the importane of this formula,

so I am going to write it down another time (probably third of fourth): [ci, e~α] = αie~α.

3. The Weyl-Weyl Lie brakets, or Lie brakets between roots are those whih we haven't onsidered yet.

In order to obtain a generalization of the reursion relations we have to onsider the Lie brakets between roots. It is the

subjet of the present setion. So lets work out these brakets. We have (by the Jaobi identity)

[

ci,
[

e~α, e~β

]]

+
[

e~α,
[

e~β, ci

]]

+
[

e~β, [ci, e~α]
]

= 0.

By substituting the formula for the Cartan-Weyl brakets we have

[

ci,
[

e~α, e~β

]]

− βi

[

e~α, e~β

]

+ αi

[

e~β, e~α

]

,

[

ci,
[

e~α, e~β

]]

= (αi + βi)
[

e~α, e~β

]

.

Thus,

[

e~α, e~β

]

is proportional to e~α+~β with some yet undetermined oe�ient. There are two remarks that I would like

to give:

1. Note that

[

e~α, e~β

]

hanges sign if we replae α ↔ β, while e~α+~β seemingly doesn't. This is atually absolutely

normal, beause we haven't onsidered the proportionality oe�ient. This oe�ient hanges sign.

2. Note how this is similar to the ation of roots on states with weights in some representation ρ. This is not aidental,
in fat, roots are weights in the adjoint representation where the ation of algebra elements is given by the Lie braket.
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Killing form and normalization

The oe�ient an be alulated for a speial ase of ~α+ ~β = 0 (orresponding to rasing/lowering). For this ase, [e~α, e−~α]
is proportional for e~0, but there is no root with

~0, sine if there was, it would ommute with all of the Cartan generators

and we would inlude it in the Cartan subalgebra. We onlude that [e~α, e−~α] lies in the Cartan subalgebra:

[e~α, e−~α] = qici.

The oe�ients qi depend on the normalization of the basis, but we an �x this by evaluating the Killing form on the Lie

algebra:

∀a, b ∈ g : g(a, b) = tr [ada · adb] .
The Killing form is by de�nition equal to the trae of produts of adjoint-representation marties assoiated with Lie

algebra elements. This is why it is often alled the invariant trae.

We impose the following normalization ondition on the Cartan generators and on roots:

g(ci, cj) = δij ,

g(e~α, e~β) = δ~α,−~β .

The oe�ients qi an then be alulated:

g (ci, [e~α, e−~α]) = qjg(ci, cj) = qi.

But on the other hand,

g (ci, [e~α, e−~α]) = tr ([adci, ade~α] · ade−~α) = αitr (ade~α · ade−~α) = αi.

Thus, qi = αi and we have

[e~α, e−~α] = αici.

Generi reursion relations

The next thing to do is to introdue the oe�ients analogous to Am and Bm from the su(2) ase:

E~α |Ψ~a〉 = A~α,~a |Ψ~a+~α〉 .
Note that there is no need for the letter B: the raising and lowering operators are on the equal footing, the anonial

pairs orresponding to the generators assoiated to the opposite roots.

By analogy with su(2), we would like to derive two reursive relations for A~α,~a. By ating on |Ψ~a〉 with E−~αE~α −E~αE−~α

we get:

E−~αE~α |Ψ~a〉 = A~a,~αE−~α |Ψ~a+~α〉 = A~a,~αA~a+~α,−~α |Ψ~a〉 ,
E~αE−~α |Ψ~a〉 = A~a,−~αE~α |Ψ~a−~α〉 = A~a,−~αA~a−~α,~α |Ψ~a〉 ,

E−~αE~α − E~αE−~α = αiCi,

(A~a,~αA~a+~α,−~α −A~a,−~αA~a−~α,~α) |Ψ~a〉 = αiCi |Ψ~a〉 = αiai |Ψ~a〉 .

We arrive at the following reursion relation:

A~a,~αA~a+~α,−~α −A~a,−~αA~a−~α,~α = ~α · ~a.

The seond reursion relation is derived through unitarity (by analogy with the su(2) ase). We hoose the Cartan

generators to be hermitian and the root vetors to hange the sign of the root upon onjugation:

C†
i = Ci,

E†
~α = E−~α.

Then we have

〈Ψ~a+~α|E~α |Ψ~a〉 = A~a,~α 〈Ψ~a+~α| Ψ~a+~α〉 = A~a,~α;

〈Ψ~a+~α|E†
−~α |Ψ~a〉 = 〈Ψ~a|E−~α |Ψ~a+~α〉∗ = A∗

~a+~α,−~α 〈Ψ~a| Ψ~a〉 = A∗
~a+~α,−~α;

E~α = E†
−~α =⇒ A~a+~α,−~α = A∗

~a,~α.

Combining the two relations, we obtain:

|A~a−~α,~α|2 − |A~a,~α|2 = ~a · ~α.
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Solving generi reursion relations

Just like in the su(2) ase we are looking for �nite-dimensional irreduible representations of our Lie algebra. Thus there

must be a minimal and maximal weights

~a
min

= ~a− q~α, ~a
max

= ~a+ p~α

for any root ~α. By analogy with the su(2) ase we add the reursion relations for all weights ~a between ~a
min

and ~a
max

and obtain:

|A~a−q~α,~α|2 = (p+ q + 1) ·
(

~a · ~α+ ~α · ~α · (p− q)

2

)

.

For the lowest weight we have

|A~a−q~α,~α|2 = 0

whih has two solutions:

1. p+ q + 1 = 0

2.

~a·~α
~α·~α = q−p

2

The �rst solution was there in the su(2) ase. It gives ontribution from the weight ~a to the dimensionality of the irrep

under onsideration, just like 2j + 1 gives ontribution to the dimensionality of the spin-j irrep of su(2).

The seond relation is partiularly interesting. We will ome to it later.

Classifying representations of Lie algebras

Finite-dimensional irreduible representations are lassi�ed by the highest weights of simple roots. They orrespond to

the weight diagrams � patterns on the root system with points onneted by root vetors. The root system itself is a

weight diagram of the adjoint representation.

As an example we give the weight diagram of the �rst fundamental representation of su(3):

In the �avour SU(3) model it orresponds to the three �avours of quarks (�u� for �up�, �d� for �down�, �s� for �strange�). It

is worth mentioning that the modern SU(3) theory is based on olors and the �avour symmetry is onsidered approximate.

The irrep is 3-dimensional and an be deomposed in three 1-dimensional subspaes whih belong to the spetra of Cartan

generators. For example, for the �u� quark

c1 |u〉 =
1

2
|u〉 .
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This an be read o� from the x-oordinate of the �u� point.

The ation of roots on these subspaes is given by the vetor addition in the root spae. The e~α vetor from the root

diagram above, for example, takes |d〉 to |u〉 (with some oe�ient), while the e~β vetor takes |s〉 to |d〉 (also with some

oe�ient).

Just like we did with the fundamental irrep of su(2) and Pauli matries, the representation matries an be onstruted

to give the Gell-Mann matries. It is a long and tedious alulation, so I am going to omit it here, but arrying it out

would ertainly help to get more �uent in the subjet.

In ase of su(3) another fundamental representation exists alled the seond fundamental representation. Its weight

diagram an be obtained from the diagram for the �rst fundamental representation by rotating it by π.

Classi�ation of semisimple Lie algebras

From the previous setion we learned that any semisimple Lie algebra with rank r and dimensionality n is desribed by a

r-dimensional root system onsisting of n− r roots. Of those, r roots are simple.

Dynkin diagrams

The strange seond solution for the reursion relation an be rewritten for the adjoint representation. Weights beome

roots, and the solution reads:

~α · ~β
~α · ~α =

q − p

2

for all roots ~α and

~β. This an be interpreted as follows: the projetion of any root on any other root has half-integer

length.

A Dynkin root system is an r-dimensional root system onsisting of r simple roots with the following properties:

1. Any two simple roots are linearly independent;

2. For any two roots ~α and

~β the projetion of one on the other has half-integer length;

3. The system is not reduible to a sum of subsystems orthogonal to eah other.

We hoose to label simple roots by nodes of a ertain graph alled the Dynkin diagram.

In order to satisfy the seond requirement the angle between simple roots an only have the following values:

1. π/2 � in this ase we don't draw an edge between the nodes

2. 2π/3 � in this ase we draw an edge between the nodes

3. 3π/4 � in this ase we draw a double edge between the nodes

4. 5π/6 � in this ase we draw a triple edge between the nodes

5. the ases when ϕ < π/2 an be treated by hoosing another subset of simple roots

Also we would hoose to paint the irle representing the node of the graph if the length of the root assoiated with this

node is smaller than the lengths of nearby roots.

Semisimple Lie algebras

We've redued the problem of lassi�ation of semisimple Lie algebras to simple ombiniatoris. We have to enumerate

all the graphs whih give rise to aeptable Dynkin root systems.

These are given by the four in�nite series An, Bn, Cn and Dn as well as by �ve exeptional Lie algebras G2, F4, E6, E7

and E8.

The Dynkin diagrams of these root system are drawn below.
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Notably, the exeptional Lie algebras have been a subjet of theories of uni�ation of fundamental fores. The E8 × E8

is one of the possible gauge groups of heteroti superstrings. Also, E8 has been used by Lisi to onstrut a (speulative)

model for the uni�ation of all fores. In the same manner, G2 is used by Lisi to unify quarks with gluons in a single

g2-valued superonnetion.

Rank-2 root systems

I inlude the pitures of the rank-2 root systems:

• We have already enountered the A2 root system of the su(3) Lie algebra:

• The B2 ∼ C2 root system:
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• D2 is tehnially not a valid root system, as it is equal to the sum of two A1 root systems. This is why so(4) =
su(2)⊕ su(2) as A1 is the root system of su(2) ∼ so(3) and D2 = A1 ∪ A1 is the root system of so(4).

• The G2 root system:

Calulating root systems

I've written a simple Haskell sript whih an generate the oordinates of roots from the Dynkin diagram. It uses Wolfram

Mathematia to perform symboli omputations. It is available on my github.

Examples of alulations:

For the (rank-1) A1 root system (the su(2) Lie algebra):

rootsLen = 2;

r[1℄ = {1};

r[2℄ = {-1};
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For the (rank-2) A2 root system (the su(3) Lie algebra):

rootsLen = 6;

r[1℄ = {1, 0};

r[2℄ = {-1/2, Sqrt[3℄/2};

r[3℄ = {-1, 0};

r[4℄ = {1/2, Sqrt[3℄/2};

r[5℄ = {1/2, -Sqrt[3℄/2};

r[6℄ = {-1/2, -Sqrt[3℄/2};

For the (rank-4) D4 root system (the one with the triality symmetry):

rootsLen = 24;

r[1℄ = {1, 0, 0, 0};

r[2℄ = {-1/2, Sqrt[3℄/2, 0, 0};

r[3℄ = {-1/2, -1/(2*Sqrt[3℄), Sqrt[2/3℄, 0};

r[4℄ = {-1/2, -1/(2*Sqrt[3℄), -(1/Sqrt[6℄), 1/Sqrt[2℄};

r[5℄ = {-1, 0, 0, 0};

r[6℄ = {1/2, Sqrt[3℄/2, 0, 0};

r[7℄ = {1/2, -1/(2*Sqrt[3℄), Sqrt[2/3℄, 0};

r[8℄ = {1/2, -1/(2*Sqrt[3℄), -(1/Sqrt[6℄), 1/Sqrt[2℄};

r[9℄ = {1/2, -Sqrt[3℄/2, 0, 0};

r[10℄ = {1/2, 1/(2*Sqrt[3℄), -Sqrt[2/3℄, 0};

r[11℄ = {1/2, 1/(2*Sqrt[3℄), 1/Sqrt[6℄, -(1/Sqrt[2℄)};

r[12℄ = {-1/2, -Sqrt[3℄/2, 0, 0};

r[13℄ = {-1/2, 1/(2*Sqrt[3℄), -Sqrt[2/3℄, 0};

r[14℄ = {-1/2, 1/(2*Sqrt[3℄), 1/Sqrt[6℄, -(1/Sqrt[2℄)};

r[15℄ = {0, 1/Sqrt[3℄, Sqrt[2/3℄, 0};

r[16℄ = {0, 1/Sqrt[3℄, -(1/Sqrt[6℄), 1/Sqrt[2℄};

r[17℄ = {0, -(1/Sqrt[3℄), 1/Sqrt[6℄, 1/Sqrt[2℄};

r[18℄ = {0, -(1/Sqrt[3℄), -Sqrt[2/3℄, 0};

r[19℄ = {0, -(1/Sqrt[3℄), 1/Sqrt[6℄, -(1/Sqrt[2℄)};

r[20℄ = {0, 1/Sqrt[3℄, -(1/Sqrt[6℄), -(1/Sqrt[2℄)};

r[21℄ = {-1/2, 1/(2*Sqrt[3℄), 1/Sqrt[6℄, 1/Sqrt[2℄};

r[22℄ = {1/2, -1/(2*Sqrt[3℄), -(1/Sqrt[6℄), -(1/Sqrt[2℄)};

r[23℄ = {1/2, 1/(2*Sqrt[3℄), 1/Sqrt[6℄, 1/Sqrt[2℄};

r[24℄ = {-1/2, -1/(2*Sqrt[3℄), -(1/Sqrt[6℄), -(1/Sqrt[2℄)};

Rotations in 8 dimensions are speial beause of this triality symmetry.
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