Second quantization in curved spacetime

Consider a free scalar field on the curved background spacetime with metric g, (z) of signature (+, — — —). The action
is given by
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where R is the Ricci scalar of the background metric and £ is an arbitrary coupling constant. The classical equations of

motion are given by
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The Klein-Gordon bracket
We define the Klein-Gordon bracket on the linear vector space of solutions of the equation of motion:
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where ¥ is an arbitrary spacelike hypersurface of dimension d — 1 = 3. Note that the bracket is by definition antilinear in
its second argument: (f;ag) = a* (f;g). Also, (f;g) = (g; f)".

Claim: The Klein-Gordon bracket is independent of the choice of ¥ as long as both its arguments are solutions of the
Klein-Gordon equation.

Proof: Consider a spacetime volume element V" enclosed by two spacelike boundaries ¥; and ¥o. The difference between
the Klein-Gordon brackets evaluated at the boundaries is equal to
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Thus (f; g) is independent of the choice of X.

Canonical quantization in curved spacetime

Now we specify a foliation of spacetime into spacelike hypersurfaces 3;, parameterized by the time coordinate t. By
definition, the canonical momentum field is given by
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and the canonical commutation relations read

with



The next ingredient is the expression of the field operator and its canonical momentum in terms of the creation and
annihilation operators:
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where {f;, f#} is a complete orthonormal basis of solutions with positive and negative frequencies defined by
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The operators a; and dl—L indeed have the meaning of creation and annihilation operators, which can be proven by calculating
their commutator.

Claim: [di;dﬂ = 0;; and [d;; a;]
Proof:
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and the remaining three commutators can be evaluated in the similar fashion. Here we have used that 7 = ¢E = n“BMqAS.

Thus a collection of {f;, f/'} with appropriate Klein-Gordon bracket relations is sufficient to manufacture a Bose-second-
quantized Hilbert (Fock) space of symmetrized products of creation operators acting on the vacuum |0), which is defined
by

Yi: a;]0) =0.

Bogolubov expansions

Consider a curved spacetime with two assimptotical flat boundaries called “the past” ¥, and “the future” X;. On each
boundary there is a preferred choice of the basis of solutions of the Klein-Gordon equation (dictated by the local spatial
Fourier transform). We will call these choices {f;; f} for “the past” and {F;; F;} for “the future”. Both of them (by
definition) satisfy the usual Klein-Gordon bracket relations.

Since both of them span the linear space of classical solutions, one of them can be expanded in terms of another:

fi =2 (inFy + BinFy)
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where «a;, and §;; are called the Bogolubov coefficients.



Claim: The physical meaning of the Bogolubov coefficients is given by
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Proof:
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The Klein-Gordon bracket relations impose the following consistency conditions on the Bogolubov coefficients:
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Claim: The consistency relations mentioned above hold automatically.
Proof:
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and the computation for 0 = < i3 f}) can be carried out in a similar fashion.

The same logic can be applied to obtain an inverse expansion.

Claim: The inverse expansion is given by

Fy = Zi (fpfi — B f7)
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The field operator (;AS(:E) can be expanded in terms of the past and future modes:
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We can relate the @ and b operators by substituting the Bogolubov expansion for fu(z) and fi(z).

Claim:
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and the expression for by can be carried out in a similar fashion.

Particle creation by the FLRW Universe

Suppose that the Universe contained no particles in “the past”. Thus, we are assigning to it a quantum state |0,) which
is a vacuum state for “the past”:

We are interested in the quantum expectation of the total number of particles in the mode k present in the Universe in
“the future”: those particles we interpret as created by the gravitational field:
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The quantum expectation is then equal to
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Now we investigate how the cosmological Friedman-Lemaitre-Robertson-Walker solution of Einstein’s equations creates
spin-0 particles from the vacuum. The metric is given by

ds? = g, (v)da"dx” = dt* — a*(t) (dgc2 +dy? + dz2) =a?(n) (d772 —da® — dy?® — dz2) ,
where 7(t) = t/a(t) is called the conformal time.
First, we have to specify a basis of positive norm solutions:
ik
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where xx(n) is a solution of the differential equation
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with

V(n) = —a*(n) - <m2 + (é - %) R(n)) :

Claim: fj(n,Z) indeed give the positive norm solutions of the Klein-Gordon equation (D +m? — {R) é(z) = 0.
Proof: OMG this calculation is so complicated I better skip it and hope that this result is indeed correct.

The perturbative calculation for m = 0 and around £ = 1/6 gives the following result for the particle-creation Bogolubov

coefficient:
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For the mean energy density we obtain the following expression:
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which is independent of arbitrary p which is put there for the dimensional considerations. Assuming that At < H~! =
v/12/R, we arrive at an approximate answer:
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Thus the FLRW Universe creates massless particles from the vacuum, unless the coupling coefficient is at the value fixed
by conformal symmetry (£ = 1/6).



